2012 Technological Studies

Standard Grade - Credit

Finalised Marking Instructions

© Scottish Qualifications Authority 2012

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Delivery: Exam Operations.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Delivery: Exam Operations may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

1. (a) The system moves the camera to the position set by the user
(1) RNA

The error detector compares the desired position with the actual position

The O/P driver provides the power required to drive the motor
(1) RNA

The position sensor provides feedback
(1) RNA (max 2)
plus any other valid point. Not "control right = moves right"
Closed loop has feedback
(1) KU
Open loop has no feedback
(1) KU
2. Init: let dirs = \%1100000
symbol counter $=\mathbf{b 0}$
Action: if pin $0=0$ then action
(1) RNA
(1) RNA $\left\{\begin{array}{l}\text { high } 7 \\ \text { pause } 1000 \\ \text { low } 7\end{array}\right.$

Alternative:
if pin $0=1$ then jump
goto action
jump:
(1) RNA for counter $=1$ to 3

(1) RNA next counter
(1) RNA return
(a) $\mathrm{Z}=$ $\frac{A \cdot \bar{B} \cdot C+A \cdot B \cdot C}{(A \cdot C \text { (2) RNA) }}$
(1) RNA for ANDing inputs
(1) RNA for OR conditions

Marks	
KU	RNA
	2
	1
	0

(b) $Z=(A \cdot C)+\bar{B}$

\[\)| (1) KU for 3 symbols |
| ---: |

\]

Quad 2 input AND
RNA for connections to each gate
(d) High power consumption/high speed switching/unaffected by
static/low fan out
(1) RNA for each valid response
4. (a)

(b)
(1) KU
(c)

(1) RNA for connecting components in series to parallel
(1) RNA for connecting parallel switches

5. (a) It is predictable/negative aesthetics of wind power (1) KU
(b) Wind causes a turbine to turn
(1) RNA

Turbine causes a generator to turn and produce electricity

(1) RNA ution wer from g(FTE) tion answer ng	Marks	
	KU	RNA
	1 0	
	2 1 0	
	$\begin{aligned} & 2 \\ & 1 \\ & 0 \end{aligned}$	
		$\begin{aligned} & 3 \\ & 2 \\ & 1 \\ & 0 \end{aligned}$
		$\begin{aligned} & 2 \\ & 1 \\ & 0 \end{aligned}$

6. (a) Easier to reprogram/requires fewer components/

Marks	
KU	RNA

(b)

Sub-system	Function
Clock	Synchronises the system/keeps all parts working in time with each other
I/O Port	Links the microcontroller to the outside world
EEPROM	Stores the program
ALU	Performs calculations

(1) KU
(1) KU
7. (a)
Mechanism

A)

Compound gear (train)
(1) KU

Mechanism B
Crank \& slider (any order)
(1) KU
(b) Rotational to reciprocal
(c)
(1) RNA for substitution

Output speed $=\quad 2000 \div\left(\frac{80}{20} \times \frac{48}{15}\right)=156 \mathrm{rev} / \mathrm{min} \quad \begin{gathered}\text { (1) RNA for answer } \\ \text { from working }\end{gathered}$
(1) RNA for VR_{1} (1) RNA for VR_{2}

Alt:
$20 \times 2000=80 \times \mathrm{T}_{1}$
(1) RNA
$15 \times 500=48 \times T_{2}$
(1) RNA
$\mathrm{T}_{1}=500 \mathrm{rev} / \mathrm{min}$ (1) RNA
$\mathrm{T}_{2}=156 \mathrm{rev} / \mathrm{min}$
(1) RNA
(d) Worm and wheel
(1) KU
(e) Lubricating moving parts or bearings on shafts
(1) KU
correct description
(f) 1 Rack and pinion
(1) KU

2 Worm and nut
8. (a) When Valve (A) is activated Valve (C) changes state causing the DAC to outstroke slowly. When the DAC is fully outstroked it actuates Valve (D) which sends a pilot signal to Valve (C). This caused Valve (C) to change state and instroke the DAC. If Valve (A) and Valve (B) are actuated the DAC will outstroke quickly.
(1) RNA for each valid point up to a (maximum of 5)
(b) Valve (C) $5 / 2$ / pilot / pilot (1) KU for each term any order

Device (E) Uni Directional Restrictor (1) KU
(c) (i) Solenoid (1) KU
(ii)

(1) KU

FTE from (c) (i)
(d) $\mathrm{A}=\pi \mathrm{r}^{2}=\pi \times 15^{2}=706 \mathrm{~mm}^{2}$ $\left.\mathrm{a}=\pi \mathrm{r}^{2}=\pi \times 5^{2}=78.5 \mathrm{~mm}^{2}\right\}_{\text {either calculation }}^{\text {(1) RNA for }}$
$\mathrm{A}_{\text {TOTAL }}=706-78.5=627.5 \mathrm{~mm}^{2}$ (1) RNA for answers
$F=P \times A$
$=0.2 \times 627.5$ (1) RNA for substitution (FTE)
$=125.5 \mathrm{~N}$
(1) RNA for answer from working
9. (a) $\frac{V_{1}}{V_{2}}=\frac{R_{1}}{R_{2}}$

Marks	
KU	RNA

$\frac{\mathrm{V}_{1}}{4 \times 3}=\frac{0 \times 5}{4 \times 5}$
RNA for substitution

$$
V_{1}=\frac{0 \times 5 \times 4 \times 3}{4 \times 5}
$$

$$
=478 \Omega
$$

(1) RNA for answer from given working
(c) (i) Relay Allows the electronic circuit to control high powered electrical circuits
(1) KU design/etc
(1) RNA
10. (a) Free body (diagram)
(1) KU

Marks
(b) $\Sigma C W M=\Sigma A C W M$

$$
\begin{aligned}
& (1300 \times 0.5)+(6000 \times 1.5)+(1800 \times 2)=\mathrm{R}_{2} \times 3 \quad \text { (1) RNA for substitution } \\
& 650+9000+3600=\mathrm{R}_{2} \times 3 \\
& \begin{aligned}
\mathrm{R}_{2} & =\frac{13250}{3} \\
& \text { (1) RNA for transposition } \\
& 4416.7 \mathrm{~N}
\end{aligned} \quad \text { (1) RNA for answer from given working }
\end{aligned}
$$

[END OF MARKING INSTRUCTIONS]

