2012 Technological Studies
Standard Grade – Credit
Finalised Marking Instructions

© Scottish Qualifications Authority 2012

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA’s NQ Delivery: Exam Operations.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre’s responsibility to obtain the necessary copyright clearance. SQA’s NQ Delivery: Exam Operations may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.
1. (a) The system moves the camera to the position set by the user
 The error detector compares the desired position with the actual position
 The O/P driver provides the power required to drive the motor
 The position sensor provides feedback
 plus any other valid point. Not “control right = moves right”
 Closed loop has feedback
 Open loop has no feedback

Mark Allocation

<table>
<thead>
<tr>
<th></th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>KU</td>
<td>RNA</td>
</tr>
<tr>
<td>1</td>
<td>RNA</td>
</tr>
</tbody>
</table>

2. Init: let dirs = %1100000
 symbol counter = b0
 Alternative: if pin 0 = 1 then jump
 Action: if pin 0 = 0 then action
 goto action
 jump:

KU RNA

<table>
<thead>
<tr>
<th></th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>RNA</td>
</tr>
<tr>
<td>1</td>
<td>RNA</td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Page 2
3 (a) \[Z = A \cdot \overline{B} \cdot C + A \cdot B \cdot C \] ① RNA for ANDing inputs \\
\[
(A \cdot C) \quad ② \quad RNA \\
① RNA for OR conditions

(b) \[Z = (A \cdot C) + \overline{B} \]

Quad 2 input AND

Hex Inverter

(d) High power consumption/high speed switching/unaffected by static/low fan out

① KU for 3 symbols
① RNA for connections to each gate
① KU
① RNA for each valid response
4. (a)

RNA for connecting components in series to parallel
RNA for connecting parallel switches

(b)

KU

(c)

A resistor should be connected in series

<table>
<thead>
<tr>
<th></th>
<th>KU</th>
<th>RNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4.</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4.</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
5. (a) It is predictable/negative aesthetics of wind power ① KU

(b) Wind causes a turbine to turn ① RNA

Turbine causes a generator to turn and produce electricity ① RNA 0

(c) Pollution/limited supply

① RNA for each valid descriptive response

(d) (i) \[E = MC \Delta T \]
\[7000 \text{ MJ} = 100 \times 4190 \times \Delta T \]
\[\Delta T = 16.7^\circ C \]
\[\text{Final Temp} = 10 + 16.7 = 26.7^\circ C \] (27°C) ① RNA for substitution 3

(ii) \[\eta = \frac{E_{\text{out}}}{E_{\text{in}}} = \frac{7 \text{ MJ}}{11 \text{ MJ}} = 0.636 \]
\[= 64\% \] ① RNA for substitution 2

① RNA for answer from working 1

\[① \text{ RNA for answer from working(FTE)} \] 0
6. (a) Easier to reprogram/requires fewer components/
shorter assembly time/etc 1 KU for each valid
Smaller/cheaper must be qualified explanation/answer

(b) Sub-system	Function
Clock | Synchronises the system/keeps all parts working in time with each other 1 KU
I/O Port | *Links the microcontroller to the outside world* 1 KU
EEPROM | Stores the program 1 KU
ALU | Performs calculations 1 KU

(c) Electrically (electronically), Eraseable, Programmable, Read-Only
Memory 1 KU

(d) Reduce overall program size/make program easier to understand/reduces memory requirement
1 KU for each valid explanation/response

Microcontrollers use binary numbers in their calculations and operations.

(e) (i) \(56 = \%\) 00111000 1 RNA
(ii) \(%11001101 = 205\) 1 RNA

(f) PWM/Pulse Width Modulation 1 KU
7. (a) **Mechanism A**
Compound gear (train)

Mechanism **B**
Crank & slider (any order)

(b) **Rotational to reciprocal**
Any order

(c)
Output speed = \(\frac{2000}{\left(\frac{80}{20} \times \frac{48}{15}\right)} \) = 156 rev/min

 Alt:
20 x 2000 = 80 x \(T_1 \)

15 x 500 = 48 x \(T_2 \)

(d) **Worm and wheel**

(e) **Lubricating moving parts or bearings on shafts**

(f) 1 Rack and pinion

2 Worm and nut

Allow FTE from (b) if applicable
8. (a) When Valve A is activated Valve C changes state causing the DAC to outstroke slowly. When the DAC is fully outstroked it actuates Valve D which sends a pilot signal to Valve C. This caused Valve C to change state and instroke the DAC. If Valve A and Valve B are actuated the DAC will outstroke quickly.

① RNA for each valid point up to a (maximum of 5)

(b) Valve C 5/2 / pilot / pilot ① KU for each term any order

Device E Uni Directional Restrictor ① KU

(c) (i) Solenoid ① KU

(ii)

① KU

FTE from (c) (i)

(d) \[A = \pi r^2 = \pi \times 15^2 = 706 \text{ mm}^2 \]
\[a = \pi r^2 = \pi \times 5^2 = 78.5 \text{ mm}^2 \]

① RNA for either calculation

\[A_{\text{TOTAL}} = 706 - 78.5 = 627.5 \text{ mm}^2 \] ① RNA for answers

\[F = P \times A \]
\[= 0.2 \times 627.5 \] ① RNA for substitution (FTE)
\[= 125.5 \text{ N} \] ① RNA for answer from working
9. (a) \[\frac{V_1}{V_2} = \frac{R_1}{R_2} \]
\[\frac{V_1}{4x3} = \frac{0x5}{4x5} \]
\[V_1 = \frac{0x5 \times 4x3}{4x5} \]
\[= 478 \, \Omega \]
\(\text{RNA for substitution from given working} \)

(b) (i) 5 k\(\Omega \)

(ii) \[I_0 = \frac{V}{R} = \frac{3x2 - 0x7}{1500} \]
\[= 0.0017A \]
\((1.7 \, mA) \)
\(\text{RNA for voltage calculation} \)
\(\text{RNA for substitution} \)
\(\text{RNA for answer from given working} \)

(c) (i) Relay
Allows the electronic circuit to control high powered electrical circuits

(ii) Base Resistor (R\(_b \))
Protects the transistor from high current

(iii) Diode
Protects the transistor from back EMF/voltage

(d) Components will not be damaged/quicker to fix or adapt design/etc
10. (a) Free body (diagram) \(\text{\ding{118}}\) KU

(b) \(\Sigma CWM = \Sigma ACWM\)

\[
(1300 \times 0.5) + (6000 \times 1.5) + (1800 \times 2) = R_2 \times 3 \quad \text{\ding{118}} \text{ RNA for substitution}
\]

\[
650 + 9000 + 3600 = R_2 \times 3
\]

\[
R_2 = \frac{13250}{3} \quad \text{\ding{118}} \text{ RNA for transposition}
\]

\[
= 4416.7 \text{ N} \quad \text{\ding{118}} \text{ RNA for answer from given working}
\]

[END OF MARKING INSTRUCTIONS]