2011 Technological Studies

Standard Grade Credit

Finalised Marking Instructions

© Scottish Qualifications Authority 2011
The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Delivery: Exam Operations Team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Delivery: Exam Operations Team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

1. (a)

(b) Control diagram
(c) Compares the set level to the feedback level
~ KU \quad KU
2. (a) Light Dependent Resistor
(b) As the light level increases the LDR's resistance decreases.

As the light level increases $\mathrm{V}_{\text {out }}$ increases.
The variable resistor acts as a sensitivity control etc
~RNA for each correct descriptive statement up to 3 .
(c) (i) $400 \Omega(-420 \Omega)$
(ii) $\quad \mathbf{V}_{\text {out }}=\frac{\mathbf{R}_{1}}{\mathbf{R}_{2}} \times \mathbf{V}_{\mathrm{cc}}$

2. (continued)
(d) Complete the circuit diagram to show how a diode could be used to protect the transistor from back-voltage (e.m.f.).
$\curvearrowleft K U$ for diode symbol
\frown RNA for wiring
RNA for orientation of diode
(e) The transistor is fully switched on when V_{BE} is 0.7 V .
(i) Saturated/saturation

Marks	
KU	RNA
	2
1	1
0	0

(ii)

(f) (i) It allows a low powered circuit to control a high powered circuit. There is no physical link between the circuits.
Control circuits can't work with very high currents
(ii)

SPST/
Single Pole Single Throw
$\curvearrowleft \mathrm{KU}$
SPDT/
Single Pole Double Throw
ᄃ KU
(KU if names reversed)

(iii) DPDT/Double Pole Double Throw
3. (a)

Page 4
3. (continued)
(c) $A_{1}=\pi r^{2}=\pi \times 15^{2}=706 \mathrm{~mm}^{2}$

(if only using A_{1} max 2 marks)
(d) 1 Reduce area of cylinder

Larger piston rod diameter

2 Reduce main air pressure

4. init: symbol counter $=\mathrm{b} 0$

set for ... next loop to 3 high 6 $\}$ _ let pins $=\% 0100000$

5. (a)

$$
\begin{aligned}
& \text { (a) } \\
& E_{\text {e }}=\quad I t V \\
& =7 \times(20 \times 60) \times 120 \\
& =1008000 \mathrm{~J} \\
& =\quad 1 \mathrm{MJ}
\end{aligned}
$$

(c) Reduces energy consumption

Reduces cost of running system etc
(d) (i) 1 Coal/gas/oil $\curvearrowleft \mathrm{KU}$ each up to 2 2
(ii) Energy source can be replenished/won't run out Reduces pollution/greenhouse gas etc

Uses less resources \quad KU each up to 2

Page 8
7. (a) Electrically Erasable Programmable Read Only Memory
(b)

Name	Function	Characteristic
ROM	Stores PBASIC language for microcontroller operations.	Data remains after power is switched off.
RAM	Stores data required when running the	pata will not remain when power is removed.
EEPROM	Stores the program.	Data remains after

Marks	
KU	RNA
1	
0	

(c) (i)

- KU for pulsed/on-off signal

ᄃ KU for identifying/describing mark and space
KU for identifying/describing that speed is determined by mark/space ratio
(ii) Maintains a high torque/smooth turning

Only required 1 output pin from microcontroller
8. (a) $\Sigma C W M=\Sigma A C W M$

$$
(1600 \times 0 \cdot 8)+(1200 \times 2)+(1000 \times 3)=F \times 4
$$

RNA for substitution
$F=\frac{6680}{4}$
RNA for transposition

Marks	
KU	RNA
$\begin{aligned} & 2 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \\ & 1 \\ & 0 \end{aligned}$
	3
	2
	1
	0

(b) 1 Lubrication/ball bearing/using alternative materials

2
~KU each up to 2
(c)

$$
\text { (i) } \quad \begin{aligned}
\text { Speed of Drum } \quad 2000 \times 1 & =50 \times \mathrm{X} \\
X & =\frac{2000}{50} \\
& =40 \mathrm{rev} / \mathrm{min} \\
\text { Speed of Load } \quad & \text { Drum speed } \times \text { Circumfe } \\
& =40 \times 314 \\
& =12560 \mathrm{~mm} / \mathrm{min} \\
& \\
& =0.2 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
\text { cir } & =\pi \mathrm{d} \\
& =3.14 \times 0.1 \mathrm{~m} \\
& =0.314 \mathrm{~m} \text { RNA for } \\
& \text { circumference } \\
& \curvearrowleft \text { RNA for drum speed }
\end{aligned}
$$

Drum speed \times Circumference
(ii) Part A Wheel

Part B Worm
$\curvearrowleft \mathrm{KU}$
$\curvearrowleft \mathrm{KU}$
$\sim \mathrm{KU}$ total if answers reversed
(d) (i) Rack \& Pinion

> RNA for answer from working

ᄃ KU total if answers reversed

