Higher Structures

Vertical Forces
$\Sigma \mathrm{F} \uparrow=\Sigma \mathrm{F} \downarrow$

Uniformly Distributed Loads (UDLs)

1 - Calculate the UDL (Force x distance)
2 - Resolve 5 kN force to find vertical component $2-\Sigma C W M=\Sigma A C W M$ taking moments about R_{A} to find R_{B}
$3-\Sigma \mathrm{F} \uparrow=\Sigma \mathrm{F} \downarrow$ to find R_{AV}
$4-\Sigma F \rightarrow=\Sigma F \leftarrow$ to find $R_{\text {AH }}$
5 - Pythagoras to find R_{A}
6 - Find the angle ($\operatorname{Tan} \alpha=R_{V} / R_{H}$)

Nodal analysis

1 - Analyse the first node to break down any forces at an angle into horizontal and
 vertical components.

2 - As we know a vertical force at A and only have one unknown vertical $A B_{v}$, we start with $\Sigma F \uparrow=\Sigma F \downarrow$ to find $A B_{V}$.

3 - We can now draw $A B$ as a triangle of forces to use trigonometry and Pythagoras to solve $A B$ and $A B_{H}$.

$A B_{H}$

4 - Once we know $A B_{H}$, we can find
AE using $\Sigma \mathrm{F} \rightarrow=\Sigma \mathrm{F} \leftarrow$.
5 - Now using node B we can add the values we already know, remembering that they act the opposite $B C$ \qquad ${ }_{\mathrm{BD}} \mathrm{BD}_{\mathrm{H}}$ direction at the other end.

6 - Start with $\Sigma \mathrm{F} \uparrow=\Sigma \mathrm{F} \downarrow$ to find $B D_{v}$.

7 - We can now draw BD as a triangle of forces to use trigonometry and Pythagoras to
 solve $B D$ and $B D_{H}$.
8 - Once we know $B D_{H}$, we can find BC using $\Sigma \mathrm{F} \rightarrow=\Sigma \mathrm{F} \leftarrow$.

9 - We then complete the table and
state whether the member is a
Strut (in compression) or a Tie (in tension)

Member	Magnitude	Nature
AB	910 N	Tie
AE	790 N	Strut
BD	1800 N	Strut
BC	2300 N	Tie

