Higher Properties of Materials

Most common properties to be considered include:

1. **STRENGTH** - the ability of a material to resist force, the bigger the force it can resist the stronger the material.

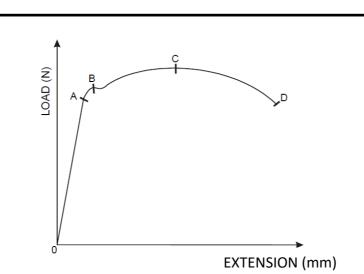
2. ELASTICITY - the ability of a material to return to its original shape or length once an applied load or force has been

removed.

3. PLASTICITY - the ability of a material to change its shape or length under a load and stay deformed even when the

load is removed.

4. DUCTILITY - the ability of a material to be stretched without fracturing and be formed into shapes such as very thin


sheets or very thin wire.

5. BRITTLENESS - the property of being easily cracked, snapped or broken.

6. MALLEABILITY - the ability of a material to be shaped, worked or formed without fracturing.

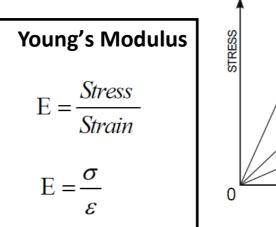
Stress	Strain
$Stress = \frac{Force}{Area}$	$Strain = \frac{Change in Length}{Original Length}$
$\sigma = \frac{F}{A}$	$\varepsilon = \frac{\Delta L}{L}$

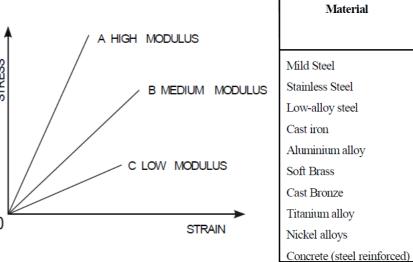
'A' - Limit of Elasticity and any loading beyond this point results in plastic deformation of the sample.

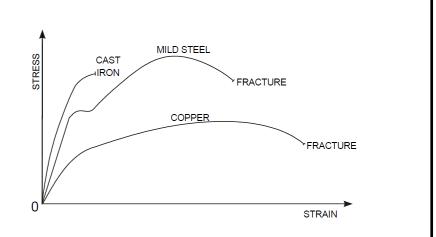
'B' - yield point and a permanent change in length results even when the load is removed.

Loading beyond this point results in rapidly increasing extension. Between points 'B' and 'D' the material behaves in a plastic or ductile manner.

'C' - maximum or ultimate tensile force that the material can withstand is reached.


Rb


Between 'C' and 'D' the cross-sectional area of the sample reduces or 'necks'. 'Necking' reduces the cross-sectional area of the specimen, which in turn reduces the strength of the sample. The sample eventually breaks or fractures at point 'D'.


Strain Gauge

Converts a change in force into a change in resistance. Used in voltage divider circuits.

Elastic Strain Energy $Es = \frac{1}{2}Fx$

- 2. Yield Strain is the maximum percentage plastic extension produced in a material before it fails under loading.

- 1. Yield Stress is the maximum stress that can be applied to a structural
- member without causing a permanent change in length.
- 3. Ultimate Tensile Stress (UTS) of a material is the maximum stress the
- material can withstand before it starts to fail.

Young's Modulus kNmm ²	Yield Stress Nmm ²	Ultimate Tensile Stress Nmm ²	Ultimate Compressive Stress Nmm ²
196	220	430	430
190-200	286-500	760-1280	460-540
200-207	500-1980	680-2400	680-2400
120	-	120-160	600-900
70	250	300	300
100	50	80	280
120	150	300	-
110	950	1000	1000
130-234	200-1600	400-2000	400-2000
45-50	-	-	100