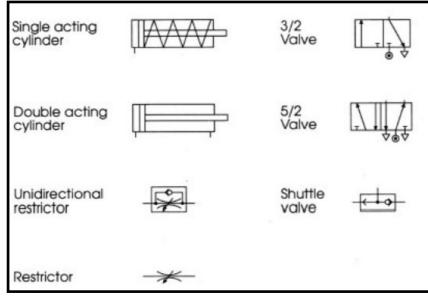
Higher Pneumatics

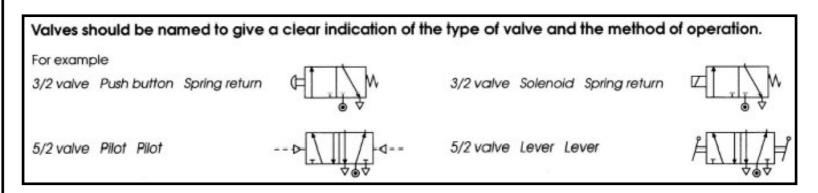
Safety

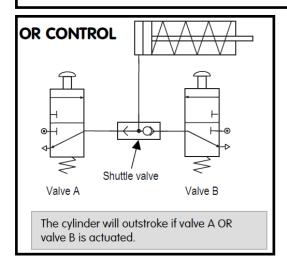
- Wear safety goggles
- Don't blow air at anyone, not even yourself
- Don't let compressed air come in contact with your skin
- Check all connections are secure before turning on the air
- Don't leave pipes trailing along the floor

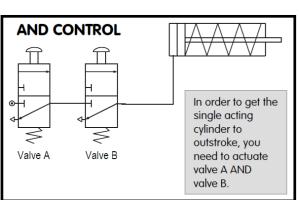
Advantages of Pneumatic System

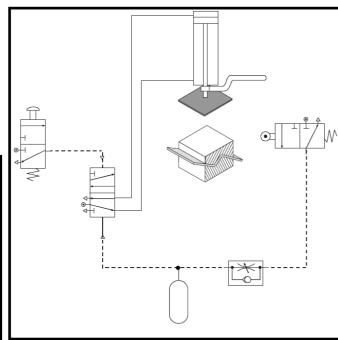

Clean - Pneumatic systems are clean because they use compressed air. If a pneumatic system develops a leak, it will be air that escapes and not oil.

Safe - Pneumatic systems are very safe compared to other systems. We cannot, for example, use electronics for paint spraying because many electronic components produce sparks.


Reliable - Pneumatic systems are very reliable and can keep working for a long time.


Economical - If we compare pneumatic systems to other systems, we find that they are cheaper to run. This is because the components last for a long time.


Flexible - Once you have bought the basic components, you can set them up to carry out different tasks.

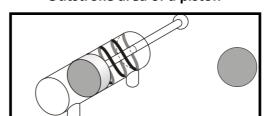


Actuators		Air
Plunger	\subseteq	Reservoir
Push button	Œ	\bigcup
Lever	1	Air supply
Roller	©	
Roller trip	6	Exhaust ↓
Spring	₩	Air lines ——
Solenoid	匚	Pilot air lines
Pilot air	▷·	
Diaphragm	- 	

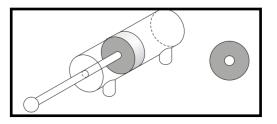
Could you describe how this circuit works?

When the push button is pressed, the 5/2 valve changes state and the 5/2 valve changes state and the cylinder outstrokes. As it outstrokes, it pushes the former is pressed into shape. As this happens it also actuates the restrictor and starts to fill up the reservoir. Once the reservoir is full, the 5/2 valve changes state and the cylinder instrokes, ready and the cylinder instrokes, ready

ANSWER

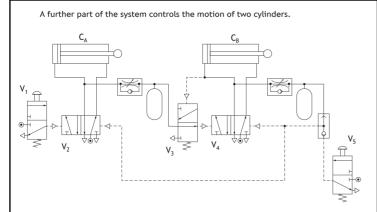

Force, Pressure, Area Calculations

$$Area = \pi r^2 = \pi \frac{d^2}{4}$$


 $Force = Pressure \times Area$

where force is measured in newtons (N), pressure is measured in Nmm⁻² and area is measured in mm²

Outstroke area of a piston



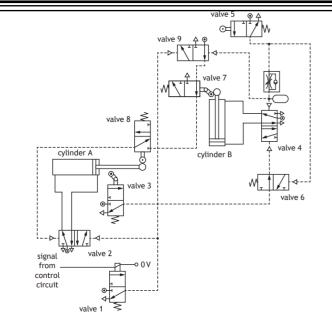
Instroke area of a piston

Effective area = piston area - piston rod area

Describing circuits

Describe, with reference to the components, the full operation of the pneumatic circuit when the button on V_1 is pressed.

Both cylinders will instroke anytime V₅ is actuated.


After a delay V4 and V2 are actuated causing both cylinders to instroke.

V₃ cuts of the pilot signal to V₄.

 V_4 causes C_B to outstroke and actuates V_3 .

As C_A outstrokes there is a delay then V_4 is actuated.

When V_1 is actuated a pilot signal actuates V_2 causing C_A to outstroke.

(a) Describe, making reference to the diagram above, the operation of the

required conditions are met.

Valves 6 and 9 cut off the air supply to prevent cylinders instroking before the

cylinder A outstrokes it actuates V₈ and cuts off the signal to V₂ allowing the process V_7 will send a pilot signal through V_8 to V_2 causing cylinder A to outstroke. When

When V_4 is actuated, cylinder B instrokes and actuates V_7 .

actuate V4 and V9.

cylinder B. V₅ also sends a pilot signal to a time delay circuit which will eventually V_5 is actuated which sends a pilot signal through V_6 to actuate V_4 and outstroke

causes cylinder B to outstroke.

This actuates V_3 which causes pilot air to flow through V_6 which actuates V_4 and

cut off. It also sends pilot air to V_{2} , causing cylinder A to instroke. When Valve 1 is actuated, pilot air flows to V₉ causing the main air through V₉ to be

(a) Describe, making reference to the diagram above, the operation of the pneumatic circuit.

VE's function is to prevent both sides of VF being actuated at the same time. When V_F has been actuated V_E will return to its original state.

ylinders to instroke.

When V_H is actuated a pilot signal will be sent to V_G and V_F causing both

After a time delay, C2 will outstroke.

When V_F is actuated C₁ will outstroke and V_E will be actuated.

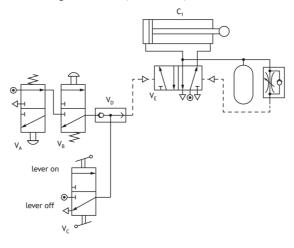
f V_B or V_C is actuated then air flows to V_F which changes state.

The engineering team are considering changing the circuit shown opposite to one that is operated by a microcontroller.

(ii) Describe two reasons why using a microcontroller-based system is preferred to a fully pneumatic system.

be reprogrammed more easily than constructing a replacement pneumatic Would allow for changes to be made to the function of the system as it can

maller/cheaper/quicker to manufacture.


Significantly fewer components would be required so the system would be

Fault finding

A mechanical engineer must design a pneumatic circuit to meet the following

- when push buttons on V_A and V_B are **not** pressed, or when the lever on V_C is thrown to the on state, a double-acting cylinder must outstroke (Outstroke = $\overline{A}.\overline{B} + C$)
- · a short time after the cylinder outstrokes, it must instroke automatically
- · the cylinder must instroke slowly.

An initial design for the circuit, shown below, is known to have faults.

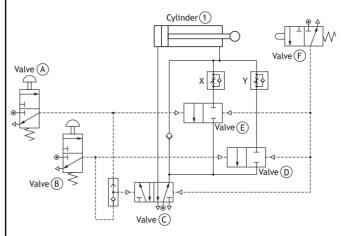
(a) Describe four faults with the circuit design shown

The ball and valve in the UDR are upside down.

There is no restrictor to slow the instroke of the cylinder.

The restrictor and reservoir are connected in the wrong sequence.

 $^{\prime}_{C}$ is connected to the output of $^{}$


B has no exhaust.

V_B lets air through when pressed.

9. A pneumatic circuit is used to compress two different types of material in the production of children's car seats. An operator actuates either valve A or Bwhen the material is in position.

Components X and Y are set at different levels.

Valves (D) and (E) are 2/2 valves. They allow air to flow through when actuated in one state but not when they are in the other state.

(a) Describe, with reference to all of the components in the pneumatic circuit, the operation of the system when valve $\ensuremath{\mbox{\/ A}}$ is pressed and released then valve (B) is pressed and released.

nurestricted.

C₁ will instroke as air is able to go through the one-way valve When C₁ is fully outstroked it actuates V_F which resets V_C and V_D.

ontstroke slowly.

 V_B also actuates V_D which allows air to exhaust causing C_{\perp} to

When V_B is actuated it actuates V_C causing C₁ to outstroke.

valve unrestricted.

 C_{\perp} will instroke quickly as air is able to go through the one-way

When C₁ is fully outstroked it actuated V_F which resets V_C and V_E.

Air cannot exhaust through V_D as it has not been actuated.

Air must escape through a UDR due to the one-way valve.

the outstroke speed to be slow.

V_A also actuates V_E allowing air to exhaust through it but causing

When V_A is pressed, V_C is actuated causing C_{\perp} to outstroke.

(b) Explain the effect that pressing both valves (a) and (B) together would have on the outstroking speed of the cylinder.

simultaneously.

This is because air can exhaust through both V_D and V_E

was pressed.

The cylinder will outstroke more quickly than if only one valve