
NOT Gate

Higher Logic

A Z

0 1

1 0

AND Gate

The output Z will only be high (1)

when both input A and B are

high (1).

A Z B

0 0 0

0 0 1

1 0 0

1 1 1

OR Gate

The output Z will be high (1)

when either input A or B or both

inputs are high (1).

A Z B

0 0 0

0 1 1

1 0 1

1 1 1

NAND
The NAND is the opposite of the

AND. The output Z will only be

low (0) when both input A and B

are high (1).

A Z B

0 1 0

0 1 1

1 0 1

1 1 0

NOR Gate
The NOR is the opposite of the

OR. The output Z will only be

high (1) when input A and B are

low (0).

A Z B

0 1 0

0 0 1

1 0 0

1 1 0

XOR Gate

The output Z will only be high (1)

when only one input is high (1).

A Z B

0 0 0

0 1 1

1 0 1

1 1 0

The output Z is the opposite of

the input A. If the input is 0 (low)

then the output will be 1 (high).

Boolean expression

A = Z

Boolean expression

A . B = Z

Boolean expression

A + B = Z

Boolean expression

A . B = Z

Boolean expression

A + B = Z

Boolean expression

A + B = Z

NAND Equivalent

NAND Equivalent

NAND Equivalent

NAND Equivalent

NAND Equivalent

Developing Boolean expressions from circuits

A

B
A + B

B

(A + B) . B
(A + B) . B = Z

Developing Boolean expressions from truth tables

A B C Z

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1 A . B . C

A . B . C

A . B . C

A . B . C

1 - Look for the rows of the truth table where output Z

is high (1).

2 - Create an expression for that row.

3 - Create an overall expression for all of the rows

using the OR expression in between.

Z = (A . B . C) + (A . B . C) + (A . B . C) + (A . B . C)

Developing Boolean expressions from word problems

From the table A = 1

From the table B = 0

C + D

A . B . (C + D)

Start by figuring out

what each of the

inputs need to be

doing for the alarm

to sound. If it must

happen then there

needs to be .

between the inputs

in the expression.

Developing a circuit from a Boolean expression

Z = (A . B) + (C . D)

1 - Start by figuring out how many logic gates you will need

and what type they are.

• In this example there are 4 inputs.

• 2 inputs are going into a NAND gate and the other 2

inputs into an AND gate. We know this from the .

between the expressions in the brackets.

• The output from those gates are going into an OR gate.

We know this from the + in between the 2 expressions.

• C is inverted so there needs to be a NOT gate too.

Completing a truth table from a Logic circuit

To complete this type of question you will need to have a

sound knowledge of the different logic gates and their

truth tables.

Column D is dependant on A and B going through a NOR

gate.

Column E is the opposite of B.

Column F is dependant on D and E going through an AND

gate.

Column Z is dependant on F and C.

A B OR NOR

0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0

A B AND

0 0 0

0 1 0

1 0 0

1 1 1

NAND Equivalent advantages

Fewer IC chips required to make circuits meaning a simpler construction.

Fewer ICs meaning smaller product size.

Fewer ICs means reduced cost.

Buying NAND gates in bulk would lower the cost rather than buying different types of gates to perform the same function.

