H Engineering Contexts & Challenges

Types of Engineer

Civil Engineer

Civil engineers deal with infrastructure. They plan, design and oversee the construction and maintenance of building structures and facilities such as roads, railways, bridges, dams, irrigation projects, power plants, and water and sewerage systems.

Chemical Engineer

Chemical engineers deal with the chemical properties of materials and how these can be changed or altered for specific jobs. This could be from coating metal with something to make it more water and rustproof, to making plastic from oil.

Electrical Engineer

This branch of engineering can be thought of to include not only electronics but also power generation and distribution, motors and electromechanical devices. It concerns itself with power generation, transmission, utilisation and measurement.

Electronics Engineer

Although the name is similar to electrical engineering, it is different. Electronic engineering is about automatic control and the implementation of it. It encompasses analogue and digital circuits as well as computer programming.

Environmental Engineer

This branch concerns itself with protecting life - from adverse environmental effects such as pollution. Environmental engineers work to improve recycling, water and air quality, waste disposal and public health.

Mechanical Engineer

Mechanical engineers concern themselves with anything that moves. They design and develop mechanical devices to complete specific jobs.

Structural Engineer

Structural engineers analyse, design, plan and research structures, ensuring that a structure is dafe and can support the needed weight. They are trained to understand and calculate the stability, strength and rigidity of a structure, ensuring that it will not collapse under certain loads, forces or conditions.

Impacts of Engineering

Social Impacts

- Are there increased employment or training opportunities created through this engineering project?
- Will there be improved infrastructure because of it?
- Will there be traffic disruption because of its creation?
- Will there be disturbances because of noise?

Environmental Impacts

- Could this provide habitats for wildlife?
- Will there be a risk of damaging animal habitats or ecosystems?
- Will there be a loss of green belt? Will nature be destroyed/damaged because of it?
- Will there be a risk of danger to animals because of this engineering solution?
- Will there be more demand on water or power services?

Economic Impacts

- Will this engineering solution bring money into the local area through tourism or other means?
- Will this attract other companies to invest in the area?
- Will this employ more people, meaning more money spent on the local area?

Emerging Technologies

You need to know about emerging technologies that are currently being developed and are not yet commercially available. As technology is always rapidly changing, you should research some emerging technologies in advance of any exams so you are up to date with current developments.

In closed loop control, the output value is constantly monitored and compared to the desired (or reference) value. If a difference exists between the "actual value" and the "reference value", it realises that an error has occurred and will change the input into the system to

Any system using an Op Amp as a comparator is known as two-state closed-loop control. The desired output it rarely met because the system is either on or off.

Positive Feedback

When drawing an error detector in a system diagram, you must always make sure the + is connected to the desired input and the

A difference amplifier amplifies the difference between the reference level and feedback signal. This helps to prevent the "overshoot" and "time lags" that can be seen in a comparator-based system. Because of this it allows for the desired output to be reached, as the difference between the two signals will eventually be 0.

Energy & Efficienc	Σy				
Work Done	$E_{WD} = F \times d$	Energy (J)	Force (N)	Distance (m)	
Weight	$W = m \times g$	Weight (N)	Mass (kg)	Gravity (9.8 ms ⁻²)	
Power	$P = \frac{E}{t}$	Power (W)	Energy (J)	Time (s)	
Electrical Energy	$E_e = ItV$	Energy (J)	Current (A)	Time (s)	Voltage (V)
Kinetic Energy	$E_K = \frac{1}{2}mv^2$	Energy (J)	Mass (kg)	Velocity (ms ⁻¹)	
Potential Energy	$E_P = mgh$	Energy (J)	Mass (kg)	Gravity (9.8 ms ⁻²)	Height (m)
Heat Energy	$E_h = cm\Delta T$	Energy (J)	Specific Heat Capacity (Jkg ⁻¹ K ⁻¹)	Mass (kg)	Change in temperature (°C)
Elastic Strain Energy	$E_s = \frac{1}{2}Fx$	Energy (J)	Force (N)	Extension (m)	
Efficiency	$\eta = \frac{E_{out}}{E_{in}} \times 100\%$				
	$\eta = \frac{P_{out}}{P_{in}} \times 100\%$				

3

8. (continued)

Battery powered portable floodlights are to be installed on the construction site to allow work to be completed in lower light levels.

The battery is rated at 15 V, 13 A. In 4.0 hours, the useful output energy is 2.32 MJ.

(b) Complete the energy audit diagram for the portable floodlight battery, showing the input and output energies, efficiency, and waste energy.

7. An engineering team has produced a prototype system to store excess energy from power plants.

When electricity production exceeds demand, electric motors are used to lift concrete blocks and place them in 'towers'. When the blocks are returned to ground level electricity is reclaimed by generators.

The first block has a mass of 10,000.0 kg. The system that raises this block is 92% efficient.

2

3

(a) Calculate the energy required to raise this block 32 m.

A second block applies a force of 80.0 kN to the supporting wire rope.

As this block is returned to ground level (at constant speed) its supporting wire rope turns a generator and electricity is reclaimed. This part of the system is 87% efficient.

(b) Calculate the power output from the generator if this block descends 15 m in 11 seconds.

7. (a	a)	E _{out} = 10000 × 9.8 × 32 = 3136000 J E _{in} = 3136000/0.92 = 3408695.65 = 3.4 MJ (2 sf)	2	1 mark for correct energy out (unit not required) 1 mark for correct energy in with
				unit
(1))	E _{in} = 80000 × 15 E _{in} = 1200000 J P _{in} = 1200000 /11 = 100.00000 kW	3	1 mark for correct energy in (units not required)
		P _{out} = 109.090909 × 0.87 = 94909.0909 = 95 kW (2 sf)		1 mark for correct power in (unit not required)
				1 mark for correct power out (with unit)
		Alternative method		
				1 mark for correct energy in (units not required)
		P _{out} = E _{out} / t		1 mark for correct energy out (units not required)
		= 1044000 / 11 = 94909.09		
		= 95kW (2 sf)		1 mark for correct power out (with unit)

7.	 A prototype of an electrically powered aeroplane is being developed and tested by a team of engineers. 								
ALTERNATION OF THE OWNER OWNER OF THE OWNER									
	The aeroplane is powered by 22 motor-driven propellers that each supply 18 kW.								
	 (a) Calculate the rotational speed of each motor if it produces 23 Nm of torque. 								
	When operating at full power the aeroplane is 73% efficient. The aeroplane's battery stores 320 MJ when fully charged.								
	(b) Calculate how much time the aeroplane can run at full power before the battery runs out. 2								
	Improving efficiency is a key task for the engineers who design the aeroplane.								
	 (c) Explain one economic and one social impact of improving the efficiency of the aeroplane. 2 								
	Econ	omic							
	Socia	al							
	When the energy ba	e aeroplane lands, the propellers a ack into electrical energy to rech	are us arge t	ed to transform its kinetic the batteries as part of a					
	regenerat	tive braking system. bined mass of the aeroplane and	Dass	engers is 4800 kg and the					
I	regenerative braking system is 64% efficient.								
	(d) Calcu 95 m	ulate the energy recovered if the a s ⁻¹ to 25 m s ⁻¹ .	eropla	ane's velocity changes from 3					
7	(2)	$P = 2\pi \times p \times T$	1						
/.	(a)	$n = 18000 / (2 \times 3.14 \times 23)$ n = 124.6192191	1						
⊢	(b)	n = 120 rev sec ⁻¹ (2 sf) Power required from battery	2	1 mark for answer with units.					
		= (22 × 18000) / 0.73 = 542465.7534 W		1 mark for power.					
		t = E/P t = 320000000 / 542465·7534 t = 589·8989899							
		t = 590 s (2sf) Energy out = Energy In x eff		1 mark for time with unit.					
	= 32000000 × 0.73 = 233600000 J			1 mark for energy.					
		Time = Energy / Power = 233600000 / (22 x 18000) = 589.8989899 = 590 s (2sf)		1 mark for time with unit.					
F	(c)	Economic: Reduces running cost due to less	2	1 mark for one economic relating to efficiency.					
		electricity being used. Social:		1 mark for one social relating to efficiency.					
		Longer flight times would be possible allowing people to travel further without stop-over.		Must have a cause and an effect for 1 mark.					
		Since the aeroplane is more efficient people will use the airline as they are helping the environment.		Credit should be given for any other suitable response which is an explanation.					
	(d)	E _k = 0.5 × 4800 × (95 ² -25 ²) = 20160000 J	3	1 mark for the difference between 95 and 25 (either as shown or the shown of the shown or					
		$\begin{array}{l} E_{\rm k} = (0.5 \times 4800 \times (95^2)) \cdot (0.5 \times 4800 \\ \times (25^2)) \\ = 20160000 \text{ J} \end{array}$		through finding the difference between two separate E _k calculations)					
				1 mark for calculation of $E_{k} \left(no \text{ units } required \right).$					
		E _e = 20160000 × 0·64 = 12902400		$ \begin{array}{l} \mbox{if candidate does} \\ E_k = 0.5 x 4800 x 70^2 \\ E_k = 11760000 (1 \mbox{ mark for } E_k) \\ E_e = 7526400 = 7.5 \mbox{ MJ } (1 \mbox{ mark for } E_e) \end{array} $					
		= 13000000 J = 13 MJ (2 sf)		1 mark for E_e , units required.					
L		1		· · ·					