Analogue Electronics

Resistors in Series

$$
\begin{array}{ll}
V=V_{1}+V_{2}+V_{3} & \text { (Voltage splits) } \\
I=I_{1}=I_{2}=I_{3} & \text { (Current stays the same) } \\
R_{T}=R_{1}+R_{2}+R_{3} &
\end{array}
$$

In a series circuit, if one component fails the
circuit will be broken and current will not be
able to flow.
The current is the same at any point in a series
circuit.
The voltage across each component adds up to
the supply voltage.
The total resistance in a series circuit is all of
the resistances added together.

Ohm's Law $\quad V=I \times R$

Combined resistance calculations

(a) Calculate the total resistance of this circuit.

First work out the total $\quad R_{T}=R_{1}+R_{2}$ series resistance, then work $R_{T}=1200+270$ out the parallel resistance \qquad using the total series value.		$\begin{aligned} & R_{P}=\frac{R_{1} \times R_{T}}{R_{1}+R_{T}} \\ & R_{P}=\frac{390 \times 1470}{390+1470} \\ & R_{P}=\frac{573300}{1800} \\ & \xlongequal{R_{P}=308 \Omega} \end{aligned}$
(b) (i) The reading on ammeter A_{1} is 0.031 A . Calculate the voltage across the 390Ω resistor.		
Using Ohm's law to calculate the voltage.	$\begin{aligned} V & =I \times R \\ V & =0.031 \times \\ V & =12 V \end{aligned}$	
(b) (ii) Calculate the current A_{2}.		
We know that voltage is the same in each branch of a parallel circuit, so Ohm's law again using 12V. Remember to add the resistances. (b) (iii) Calculate the current A_{3}.		
We know that the current splits in a parallel circuit so we need to add the current at A_{1} and A_{2} together to get the total current at A_{3}.	$\begin{aligned} & A_{3}=A_{1} \\ & A_{3}=0 . \\ & \underline{A_{3}}=0 . \end{aligned}$	$\begin{aligned} & +A_{2} \\ & 31+\left(8.2 \times 10^{-3}\right) \\ & \underline{\underline{39 A}} \end{aligned}$

Voltage Dividers - Input sub-system

Thermistor at

As the temperature increases, the resistance of across it to also decrease. This causes the share of the voltage across the variable resistor ($V_{\text {out }}$) to increase. The variable resistor acts as a sensitivity control.

Thermistor at bottom = Cold sensor (TDRU)

 causes the share of the voltage across the
resistor acts as a sensitivity control.

LDR at top $=$ Light sensor (LURD)

LDR at bottom = Dark sensor (LDRU)

Transistors - Process sub-system

| The diode protects the
 transistor from back
 EMF (Electro-magnetic
 Flux). It is a polarity
 conscious device and
 can only allow current
 to flow the way that
 the arrow points.
 Connected as shown it
 will not allow current
 to flow from the top to
 the transistor. | The base resistor is there to protect the transistor.
 The voltage across the base resistor will be $\mathrm{V}_{\text {out }}-0.7 \mathrm{~V}$. |
| :--- | :--- | :--- | :--- | :--- | :--- |

Relays \& other components - Output sub-system

When the relay closes the switch in this circuit, the LEDs light and the buzzer sounds. Various output components can circuit. circuit.

Describing Circuits

(a) Describe the operation of the circuit. Make reference to th

 resistance of the thermistor and the voltage V_{1}.When the temperature decreases to a low temperature, the resistance of the thermistor will increase, causing V1 to increase. Once it increases above the threshold voltage, the transistor will saturate causing the relay to close the switch which will light the LEDs and sound the buzzer.

(b) The fixed resistor R is replaced with a variable resistor. Explain the effect on the operation of the circuit by replacing the fixed resistor (R) with the variable resistor.

The resistance of the variable resister can be altered which will
change the temperature that the circuit will switch on at.

LDR Graph

The LDR graph can be tricky to read. Pay close attention to the values at 1 or 10 to make sure you know whether it's $1 \mathrm{~s}, 10$ s, 100 s or 1000 s that you are working with. Remember that the resistance is measured in $\mathrm{k} \Omega$.

Thermistor Graph

The Thermistor graph also jumps up in large increments on the resistance scale. Be careful to follow the correct thermistor type line to work out your value.

Voltage Divider Calculations

A voltage divider is a series circuit.
Voltages across the two components added together equal the supply voltage The current is the same through both components.
To find the total resistance, add the resistances of both components together. (a) Calculate the resistance of the thermistor.

Step 1 - we know a voltage and a esistance voltage and a the circuit so we can calculate current.

Step 2 - We can now work out the voltage across the thermistor by knowing that the total voltage is the voltage across both
components added together.
Step 3 - now we can use Ohm's law
again to calculate the resistance of
the thermistor using the voltage
across the thermistor and the
current that stays the same.

In order to obtain higher gains, more than one transistor can be used, the output from each transistor being amplified by the next (known as cascading).
Increasing the gain of the circuit
means:

1. the switching action of the circuit
is more immediate;
2. a very small base current is
required in switching;
3. the input resistance is very high. $\quad A_{I}=h_{F E 1} \times h_{F E 2}$ A popular way of cascading two transistors is to use a Darlington pair

