Outcome 1:

Your High School Badge

Homework – 1.1

For the conditions in *figure 1.1.1* below calculate;

- (a) the combined resistance of R_1 and R_2 .
- (b) the total resistance of the network R₁, R₂ and R₃
- (c) the current 'I' supplied by the battery.
- (d) the P.D. (potential difference) V_P across the parallel resistors R_1 and R_2 and the P.D. V_3 across R_3 .
- (e) the current I_1 flowing in R_1 and I_2 flowing in R_2 .

Homework – 1.2

- (a) state Kirchhoff's 1st and 2nd laws.
- (b) For the circuit below calculate;
 - (i) the total effective resistance between points A and B in the network.
 - (ii) the P.D. across R₂ and the P.D. across R₃.
 - (iii) the current flowing in each resistor I_1 , I_2 and I_3 .

(b) Calculate the variable resistor setting in the potential divider shown.

Homework – 1.4

A 2.5k linear potentiometer is used as a potential divider for a 9V supply *figure 1.4.1*. The 'wiper' on the 'pot' is set at B, a point four fifths of the way along the track from point C at the end of the potentiometer.

- (a) What is the resistance of length B, C of the track.
- (b) What is the output voltage V_{out} at this setting.
- (c) If a resistor is now connected as a 'load' across the output as shown in figure 1.4.2, what effect will this have on the output voltage when
 - (i) the load resistance is 20k and,
 - (ii) when the load resistance is 2k.
 - (iii) Comment on your findings.

Homework – 1.5

The *figure 1.5.1* below shows a diagramatic sketch of a simple bi-polar (junction transistor) configuration.

- (a) Copy the diagram and complete the transistor
 - symbol to represent an N.P.N device and identify.
 - (i) the emitter
 - (ii) the base
 - (iii) the collector.

0V --0

Applied Electronics – Outcome 1 - Transistor Theory

- (b) Label the diagram showing
 - (i) V_b base voltage relative to ground.
 - (ii) V_e emitter voltage relative to ground.
 - (iii) V_{ce} voltage between collector and emitter junctions.
 - (iv) V_{be} voltage between base and emitter junctions.
 - (v) V_1 voltage across load resistor.
- (c) On the diagram clearly show the conventional current flow for;
 - (i) I_c collector current.
 - (ii) I_b base current.
 - (iii) I_e emitter current.
- (d) Indicate the output when connected in "common emitter mode".
- (e) Explain the term current gain as applied to the transistor.
- (f) Clearly describe the operation of the transistor explaining what is meant by 'saturation'.

Homework – 1.6

In the circuit shown below state whether the transistor will be switched on if,

- (a) $R_1 = 10k$; $R_2 = 1k$; $V_{cc} = +4.5V$
- (b) $R_1 = 10k$; $R_2 = 100k$; $V_{cc} = +4.5V$
- (c) $R_1 = 4k7$; $R_2 = 10k$; $V_{cc} = +15V$
- (d) $R_1 = 2k2$; $R_2 = 10k$; $V_{cc} = +24V$

Figure 1.6.1

Homework – 1.7

In the circuit shown below the base emitter junction voltage V_{be} is 0.7V.

Figure 1.7.1

(a) If
$$V_{cc} = +4.5V$$
, $I_c = 25mA$ and $R_1 = 3k9$, calculate
(i) the base current $I_{b.}$
(ii) the current gain A_I .

(b) If
$$I_b = 20\mu A$$
 and $I_c = 2mA$ and $V_{cc} = 9V$, calculate;
(i) R_1
(ii) R_2
(iii) A_I

- (d) If $V_{cc} = 6V$ and $I_b = 20\mu A$, calculate the value of R_1

Homework – 1.8

In the circuit shown below calculate the value of R_b if the base current is 10µA.

Figure 1.8.1

Determine also the output voltage V_c.

Homework – 1.9

Figure 1.9.1

In the circuit above determine the value of $\mathrm{I}_c,\,\mathrm{I}_b$ and V_i which will result in saturation of the transistor.

Homework – 1.11

For each of the six simple transistor circuits shown below, *figure 1.11.1,* calculate;

- (a) the emitter voltage; (V_e)
- (b) the emitter current (I_e);
- (d) the base current (I_b).

Homework – 1.12

In the circuit shown, *figure 1.12.1,* the transistor has a gain of 50 (hfe). Complete the table, *fig.Q8b* by calculating the values of;

Homework – 1.13

The diagram below is part of a circuit which is suitable for processing the input from various types of sensors and providing an appropriate output.

- (a) (i) Name the switching circuit shown and describe its operation and advantage.
 (iii) State the overall gain h_{fe} for the arrangement.
- (b) State the purpose of the diode D1 in the circuit.
- (c) For each of the applications given below, sketch the input part of the circuit diagram that would be suitable and the output device which would be appropriate.
 - (i) Thermostat for the aquarium.
 - (ii) A rain detector to automatically close skylights.
 - (iii) A window "open" alarm.
 - (iv) Automatic window shades for bright sunlight.