Outcome 1:

Homework - 1.1
For the conditions in figure 1.1 .1 below calculate;
(a) the combined resistance of R_{1} and R_{2}.
(b) the total resistance of the network R_{1}, R_{2} and R_{3}
(c) the current ' I ' supplied by the battery.
(d) the P.D. (potential difference) V_{p} across the parallel resistors R_{1} and R_{2} and the P.D. V_{3} across R3.
(e) the current I_{1} flowing in R_{1} and I_{2} flowing in R_{2}.

Figure 1.1.1

Homework - 1.2

(a) state Kirchhoff's $1^{\text {st }}$ and $2^{\text {nd }}$ laws.
(b) For the circuit below calculate;
(i) the total effective resistance between points A and B in the network.
(ii) the P.D. across R2 and the P.D. across R3.
(iii) the current flowing in each resistor $\mathrm{I}_{1}, \mathrm{I}_{2}$ and I_{3}.

Figure 1.2.1

Homework - 1.3

(a) Calculate th

(i)

(b) Calculate the variable resistor setting in the potential divider shown.

Homework - 1.4

A 2.5 k linear potentiometer is used as a potential divider for a 9 V supply figure 1.4.1. The 'wiper' on the 'pot' is set at B , a point four fifths of the way along the track from point C at the end of the potentiometer.

Figure 1.4.1

Figure 1.4.2
(a) What is the resistance of length B, C of the track.
(b) What is the output voltage Vout at this setting.
(c) If a resistor is now connected as a 'load' across the output as shown in figure 1.4.2, what effect will this have on the output voltage when
(i) the load resistance is 20 k and,
(ii) when the load resistance is 2 k .
(iii) Comment on your findings.

Homework - 1.5

The figure 1.5.1 below shows a diagramatic sketch of a simple bi-polar (junction transistor) configuration.
(a) Copy the diagram and complete the transistor symbol to represent an N.P.N device and identify.
(i) the emitter
(ii) the base
(iii) the collector.

Figure 1.5.1

(b) Label the diagram showing
(i) $\quad \mathrm{V}_{\mathrm{b}}$ - base voltage relative to ground.
(ii) $\quad V_{e}-$ emitter voltage relative to ground.
(iii) $\quad \mathrm{V}_{\mathrm{ce}}$ - voltage between collector and emitter junctions.
(iv) $\quad V_{b e}-$ voltage between base and emitter junctions.
(v) $\quad V_{I}$ - voltage across load resistor.
(c) On the diagram clearly show the conventional current flow for;
(i) $\quad \mathrm{I}_{\mathrm{c}}$ - collector current.
(ii) I_{b} - base current.
(iii) $\quad \mathrm{I}$ - emitter current.
(d) Indicate the output when connected in "common emitter mode".
(e) Explain the term current gain as applied to the transistor.
(f) Clearly descibe the operation of the transistor explaining what is meant by 'saturation'.

Homework - 1.6

In the circuit shown below state whether the transistor will be switched on if,
(a) $\mathrm{R}_{1}=10 \mathrm{k} ; \mathrm{R}_{2}=1 \mathrm{k} ; \mathrm{V}_{\mathrm{cc}}=+4.5 \mathrm{~V}$
(b) $\mathrm{R}_{1}=10 \mathrm{k} ; \mathrm{R}_{2}=100 \mathrm{k} ; \mathrm{V}_{\mathrm{cc}}=+4.5 \mathrm{~V}$
(c) $\quad \mathrm{R}_{1}=4 \mathrm{k} 7 ; \mathrm{R}_{2}=10 \mathrm{k} ; \mathrm{V}_{\mathrm{cc}}=+15 \mathrm{~V}$
(d) $\quad \mathrm{R}_{1}=2 \mathrm{k} 2 ; \mathrm{R}_{2}=10 \mathrm{k} ; \mathrm{V}_{\mathrm{cc}}=+24 \mathrm{~V}$

Figure 1.6.1

Homework - 1.7

In the circuit shown below the base emitter junction voltage $\mathrm{V}_{\text {be }}$ is 0.7 V .

Figure 1.7.1
(a) If $\mathrm{V}_{\mathrm{cc}}=+4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{c}}=25 \mathrm{~mA}$ and $\mathrm{R}_{1}=3 \mathrm{k} 9$, calculate
(i) the base current I_{b}.
(ii) the current gain AI.
(b) If $\mathrm{I}_{\mathrm{b}}=20 \mu \mathrm{~A}$ and $\mathrm{I}_{\mathrm{c}}=2 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{cc}}=9 \mathrm{~V}$, calculate;
(i) R_{1}
(ii) R_{2}
(iii) A_{I}
(c) If $\mathrm{V}_{\mathrm{cc}}=6 \mathrm{~V}, \mathrm{R}_{1}=100 \mathrm{k}, \mathrm{R}_{2}=1 \mathrm{k}$, calculate
(i) the P.D. across R_{1}
(ii) Ib
(iii) I_{c} if $\mathrm{h}_{\mathrm{fe}}=60$
(iv) The P.D across R2
(d) If $\mathrm{V}_{c c}=6 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{b}}=20 \mu \mathrm{~A}$, calculate the value of R_{1}

Homework - 1.8

In the circuit shown below calculate the value of R_{b} if the base current is $10 \mu \mathrm{~A}$.

Figure 1.8.1
Determine also the output voltage V_{c}.

Homework - 1.9

Figure 1.9.1
In the circuit above determine the value of I_{c}, I_{b} and V_{i} which will result in saturation of the transistor.

Homework - 1.10
In the circuit shown below calculate the output voltage and the voltage gain of the circuit for the conditions shown. State any assumptions you make.

Figure 1.10.1

Homework - 1.11

For each of the six simple transistor circuits shown below, figure 1.11.1, calculate;
(a) the emitter voltage; (V_{e})
(b) the emitter current (I_{e};
(d) the base current (Ib).

(ii)

Figure 1.11.2
(iii)

Figure 1.11.3

(V)

Figure 1.11.5

(iv)

(Vi)

Homework - 1.12

In the circuit shown, figure 1.12.1, the transistor has a gain of 50 (hfe). Complete the table, fig. $Q 8 b$ by calculating the values of;
(i) base current, I_{b};
(ii) the collector current, I_{c};
(iii) V out, for each value of $\mathrm{V}_{\text {in }}$ given.

Figure 1.12.1

Homework - 1.13

The diagram below is part of a circuit which is suitable for processing the input from various types of sensors and providing an appropriate output.

(a) (i) Name the switching circuit shown and describe its operation and advantage.
(iii) State the overall gain hfe for the arrangement.
(b) State the purpose of the diode D1 in the circuit.
(c) For each of the applications given below, sketch the input part of the circuit diagram that would be suitable and the output device which would be appropriate.
(i) Thermostat for the aquarium.
(ii) A rain detector to automatically close skylights.
(iii) A window "open" alarm.
(iv) Automatic window shades for bright sunlight.

