

2014 Technological Studies

Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2014

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Technological Studies Higher

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.

- (a) Marks for each candidate response must <u>always</u> be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question. If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader/Principal Assessor.
- (b) Marking should always be positive ie, marks should be awarded for what is correct and not deducted for errors or omissions.

GENERAL MARKING ADVICE: Technological Studies Higher

The marking schemes are written to assist in determining the "minimal acceptable answer" rather than listing every possible correct and incorrect answer. The following notes are offered to support Markers in making judgements on candidates' evidence, and apply to marking both end of unit assessments and course assessments.

Question		on	Mark Allocation		Marks	
1	a	i	feedspeed:	if pin $1 = 1$ then finefeed if pin $2 = 1$ then draftfeed return	2 2	
			finefeed:	gosub fine return	1	
			draftfeed:	gosub draft return1 for all 3 returns	1 1	7
		ii	draft:	for b0 = 1 to 255 high 7 pause 10	1	
				low 7 1 high & low 7	1	
				next b0	1	
				return 1 including label	1	5
	b		time for each counter	loop = 3060/255 both substitutions = 12ms answer ratio 3:9	1 1	
				mark 3ms space 9ms	1 1	4
				- r	-	(16)
						(10)

Question		Mark Allocation		M	arks
a		forces in balance (1) / structure stationary \underline{or} at rest (1)			2
b		$\Sigma F_{\rm M} = 0$			
		$R_{AV} = 6.9 \sin 39 + 0.8 \sin 12 + 1.2 \cos 28$	3 components @1 each	3	
		=4.34+0.17+1.06			
		=5.57kN	answer (units not necessary)	1	
		$\Sigma F_{\rm H} = 0$			
		$R_{AH} = 6.9\cos 39 - 0.8\cos 12 - 1.2\sin 28$	3 components @1 each	3	
		=5.36-0.78-0.56			
		=4.02kN	answer (units not necessary)	1	
		$R_{\rm A} = \sqrt{(5 \cdot 57^2 + 4 \cdot 02^2)}$	formula and calculation	1	
		=6.87kN	answer including units	1	
		$\theta = \tan^{-1}(5 \cdot 57 / 4 \cdot 02)$	formula and calculation	1	
		$=54\cdot 2^{\circ}$	answer including units	1	12
					(14)
					(14)
	a b	a b	a forces in balance (1) / structure stationary <u>or</u> a $\Sigma F_{V} = 0$ $R_{AV} = 6.9 \sin 39 + 0.8 \sin 12 + 1.2 \cos 28$ $= 4.34 + 0.17 + 1.06$ $= 5.57 \text{kN}$ $\Sigma F_{H} = 0$ $R_{AH} = 6.9 \cos 39 - 0.8 \cos 12 - 1.2 \sin 28$ $= 5.36 - 0.78 - 0.56$ $= 4.02 \text{kN}$ $R_{A} = \sqrt{(5.57^{2} + 4.02^{2})}$ $= 6.87 \text{kN}$ $\theta = \tan^{-1}(5.57/4.02)$ $= 54.2^{\circ}$	aMark Allocationaforces in balance (1) / structure stationary or at rest (1)b $\Sigma F_V = 0$ $R_{AV} = 6.9 \sin 39 + 0.8 \sin 12 + 1.2 \cos 28$ 3 components @1 each $= 4.34 + 0.17 + 1.06$ answer (units not necessary) $\Sigma F_H = 0$ answer (units not necessary) $\Sigma F_H = 0$ answer (units not necessary) $\Sigma F_H = 0$ answer (units not necessary) $R_{AH} = 6.9 \cos 39 - 0.8 \cos 12 - 1.2 \sin 28$ 3 components @1 each $= 5.36 - 0.78 - 0.56$ answer (units not necessary) $R_A = \sqrt{(5.57^2 + 4.02^2)}$ formula and calculation $= 6.87 kN$ answer including units $\theta = \tan^{-1}(5.57/4.02)$ formula and calculation $= 54.2^\circ$ answer including units	aMark AllocationMarkaforces in balance (1) / structure stationary or at rest (1)b $\Sigma F_V = 0$ $R_{AV} = 6.9 \sin 39 + 0.8 \sin 12 + 1.2 \cos 28$ 3 components @1 each $= 4.34 + 0.17 + 1.06$ $= 5.57 kN$ answer (units not necessary)1 $\Sigma F_H = 0$ $R_{AH} = 6.9 \cos 39 - 0.8 \cos 12 - 1.2 \sin 28$ 3 components @1 each $= 5.36 - 0.78 - 0.56$ $= 4.02 kN$ answer (units not necessary)1 $R_A = \sqrt{(5.57^2 + 4.02^2)}$ formula and calculation $= 6.87 kN$ $\theta = tan^{-1}(5.57/4.02)$ $formula and calculation$ $= 54.2^{\circ}$

Qı	Question		Mark Allocation		
4	a		Resistance of thermistor at $16^{\circ}C = 80k\Omega$	1	
			$ \begin{array}{l} R_V / 33 = 10 / 80 & substitutions \\ R_V = 10 / 80 \times 33 & \\ = 4 \cdot 13 k \Omega & answer including units \end{array} $	1 1	3
	b		$85\% \times 6 = 5 \cdot 1V$ $I_{B} = (5 \cdot 1 - 0 \cdot 7) / 2000$ substitutions $= 2 \cdot 20mA$ $P = VI$ $I_{C} = 20 / 24$ $= 0 \cdot 833A$ answer $I_{C} = 20 / 24$ $I_{C} = 20 / 24$ $I_{C} = 20 / 24$ $I_{C} = 10 \cdot 10 + 10$ answer	1 1 1	
			$h_{FE} = 833/2 \cdot 2$ substitutions = 379 answer (no units)	1	6
	с		Protect transistor (1) / from back e.m.f.(1)		2
	d	i	$ I_C = 50 / 24 \qquad \qquad substitutions \\ = 2.08A \qquad \qquad answer \\ h_{FE} = 2080 / 1.85 (I_B = (5.1 - 1.40/2000) \qquad \qquad substitutions \\ = 1124 \qquad \qquad answer (no units) $	1 1 1 1	4
		ii	24v		
			Transistor A with correct connections Transistor B with correct connections Motor and diode with correct connections	1 1 1	3
	e		From table, $h_{FE1} = 120$	1	
			$h_{FE2} = \frac{1124}{120}$ substitutions = 9.37	1 1	3
				Ĩ	(21)

Qı	iestic	on	Mark Allocation	Marks		
6	a		$A = 26 \times 6 = 156 \text{mm}^2$ answer (units not necessary)	1		
			$\sigma = F/A$ = 40/156 correct substitution of values using a load value within elastic region = 0.256kN/mm ² correct calculation (units not necessary)	1 1		
			$\varepsilon = \Delta 1/1$ = 0.2/120 correct substitution of values using the corresponding extension value = 0.00167 correct calculation			
			$E = \sigma / \varepsilon$ = 0.256/0.00167 correct substitution into correct formula = 153kN / mm ² correct answer including correct units	1 1	7	
	b	i	Material stretches elastically then returns to original length		2	
		ii	stretches elastically until passes yield point, then plastic stretching does not return to original length/stays permanently deformed.		2	
					(11)	

Question		Mark Allocation		arks
7		place counter = 0 increment counter gripper close is gripper limit switch high? Y gripper stop Arm FWD wait 3-2s Arm stop gripper limit ls gripper limit switch low? N Switch low?	14 1	
		Y gripper stop Arm back wait 3·2s Arm stop noverack N is counter = 18? Y return	1	16

$Q\iota$	iestic	on	Mark Allocation	Marks	
8	a	i	Inverting		1
		ii	Increase gain / re-inverts to +ve output		2
	b		$\begin{split} V_{out} &= 6 \times 0.85 \\ &= 5 \cdot 1 V \\ A_V &= 20/10 = 2 \\ V_1 &= 5 \cdot 1/2 \\ &= 2 \cdot 55 V \end{split} \qquad answer \\ 1^{st} amp: \qquad A_V &= 2 \cdot 55/0 \cdot 68 \\ &= 3 \cdot 75 \end{aligned} \qquad substitutions \\ &= 3 \cdot 75 \end{aligned}$	1 1 1 1 1 1 1 1	8
					(11)

Qu	Question		Mark Allocation			arks
9	a		Distance CD = $\tan 30 \times 3.46 = 2m$ Vertical component of 2.9kN force = 2.9	$\times \sin 45 = 2.05$ kN answer	1 1	
			$\begin{split} \Sigma M_D &= 0\\ (C_{horizontal} \times 2) + (2 \cdot 05 \times 1 \cdot 73) &= (4 \times 3 \cdot 46)\\ (C_{horizontal} \times 2) + 3 \cdot 55 &= 13 \cdot 84\\ C_{horizontal} &= 5 \cdot 15 \text{kN} \end{split}$	5) 3 moments @ 1 each use of 1.73m answer	3 1 1	
			Reaction at $C = 5.15/\cos 30$	substitution	1	
			= 5.94kN	answer	1	9
	b		Analysing Node A			
			$F_{AB} = 4/\sin 30$ = 8kN (STRUT)	substitution magnitude with unit (1) & nature (1)	1 2	
			$F_{AE} = 8\cos 30^{\circ}$ = 6.93kN (TIE)	substitution magnitude with unit (1) & nature (1)	1 2	
			Analysing Node B			
			$\Sigma F_{\rm H} = 0 (\rightarrow +ve)$ F _{BD} cos30 - 8cos30 + 5.94cos30 = 0		1	
			$F_{BD} - 8 + 5.94 = 0$ $F_{BD} = 2.06 \text{kN}$ (STRUT)	magnitude with unit (1) & nature (1)	1 2	10
	c		Compensates for changes in temperature			2
	d		$\begin{split} I_c &= 10/12 = 0.83 A \\ I_b &= 0.83/200 = 4.15 m A \end{split}$	substitution (1) answer (1) substitution (1) answer (1)	2 2	
			$V_{drop} \text{ across } 320\Omega = 320 \times 4.15 \times 10^{-3}$ $= 1.328V$	substitution answer	1 1	
			$V_{out} = 1 \cdot 328 + 0 \cdot 7$ $= 2 \cdot 028 V$	answer	1	
			Error = 2.028/20	substitution & gain of 20	1	
			= 0.1014V V at inverting input = $12 \times 120.03/240.15$	5 = 6.00V answer	1 1	
			V at non-inverting input = $5.998 + 0.1014$	4	1	
			= 0.10 V	answer	1	
			$R_V = 330 \times 6.00/6 \cdot 10$ $= 325\Omega$	answer including units	1 1	13
	e		As V _{in} increases, non-inverting input grea op-amp 1 output switches high	ter than inverting input of op-amp1	1 1 1	
		as voltage increases L_2 turns on			1	
			as L_2 switches on L_1 switches off as voltage increases L_2 switches on and L_2	o switches off	1	6
			as voltage mereases L3 switches on and L		I	U (40)
						(40)

Question		on	Mark Allocation		Marks		
10	a	i	input voltage = gain = $(3 \cdot 2/98 >$ $R_f/R_i = 32 \cdot 7 - 1$ $R_i = 10k\Omega$ $R_f = 317k\Omega$	$140 \times 0.7 = 98 \text{mV}$ $(10^{-3}) = 32.7$ = 31.7 two suitable	answer answer answer e resistors in kΩ range non-inverting amp	1 1 1 1	5
	Ъ	ii	10kΩ 0V input to ADC at ADC output = 2 = 1 output as binary tyrewarn: lowtemp: lowon: incpressure: hightemp: highon: decpressure:	$317k\Omega$ $0.56N/mm^{2} = 3.2 \times 0.56/0.7$ $= 2.56V$ $55 \times 2.56/4.8$ 36 10001000 $low4$ gosub adcread (let) TEMP = DATA high 4 gosub adcread (let) PRESS = DATA if PRESS < 160 then lowtemp if PRESS > 200 then hightemp return if TEMP < 30 then incpressure gosub low return PRESS = PRESS + 20 if PRESS < 160 then lowon return if TEMP > 140 then decpressure gosub high return PRESS = PRESS - 20 if PRESS > 200 then highton return	all substitutions answer all substitutions answer answer allocated below let is optional both adcread uding label 'tyrewarn' all 4 returns	$ \begin{array}{c} 1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\$	5

Qı	Question		Mark Allocation			arks
11	a		Holds position/precision/quick stop - star	t any 2@1		2
	b		crowdspot: gosub adcread if data > 182 then movesp return	oot (mark allocated below)	1 2	
			calc.no	of step loops $(144/1 \cdot 8)/4 = 80/4 = 20$ calc. pause $4000/80 = 50$ ms	2 1	
			movespot: for $b1 = 1$ to 20 (let) pins = %1010 0000 pause 50 (let) pins = %1001 0000 pause 50 (let) pins = %0101 0000	incl. <i>next b1</i> below	1	
			pause 50 (let) pins = %0110 0000 pause 50 next b1 pause 1500	correct step sequence all 4 pauses	1 1 1	
				calc. pause 1600/80 = 20	1	
			for b1 = 1 to 20 (let) pins = %0110 0000 pause 20 (let) pins = %0101 0000 pause 20 (let) pins = %1001 0000 pause 20	incl. <i>next b1</i> below	1	
			(let) pins = $\%1010\ 0000$ pause 20 next b1	correct step sequence all 4 pauses	1 1	
			return	both returns	1	15
	C	i	$E = 196 \text{kN/mm}^2$ UTS = 430 N/mm ²	from data book from data book	1 1	
			$ \begin{aligned} \sigma &= 430/10 = 43 \text{N/mm}^2 \\ \epsilon &= \sigma/\text{E} = 43/196 \times 10^3 \\ &= 0.219 \times 10^{-3} \end{aligned} $	answer all substitutions answer	1 1 1	
			$\Delta 1 = \varepsilon \times 1 = 0.219 \times 10^{-3} \times 120$ $= 0.026 \text{mm}$	all substitutions answer & units	1 1	7
		ii	Force on each bolt = $330/2 = 165 + 50$ =215N $A = F/\sigma = 215/43$ = $5 \cdot 00 \text{mm}^2$ $d = \sqrt{4}A/\pi = \sqrt{4} \times 5 \cdot 00/3 \cdot 14$ = $2 \cdot 52 \text{mm}$	answer (165) answer both substitutions answer transposition answer including units	1 1 1 1 1 1	6

[END OF MARKING INSTRUCTIONS]