2014 Technological Studies

Higher

Finalised Marking Instructions

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Technological Studies Higher

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.
(a) Marks for each candidate response must always be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question. If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader/Principal Assessor.
(b) Marking should always be positive ie, marks should be awarded for what is correct and not deducted for errors or omissions.

GENERAL MARKING ADVICE: Technological Studies Higher

The marking schemes are written to assist in determining the "minimal acceptable answer" rather than listing every possible correct and incorrect answer. The following notes are offered to support Markers in making judgements on candidates' evidence, and apply to marking both end of unit assessments and course assessments.

Question

Question			Mark Allocation		Marks	
3	a		forces in balance (1) / structure stationary or at rest (1)			2
	b		$\Sigma \mathrm{F}_{\mathrm{V}}=0$			
			$\begin{aligned} \mathrm{R}_{\mathrm{AV}} & =6 \cdot 9 \sin 39+0 \cdot 8 \sin 12+1 \cdot 2 \cos 28 \\ & =4 \cdot 34+0 \cdot 17+1 \cdot 06 \end{aligned}$	3 components @ 1 each	3	
			$=5 \cdot 57 \mathrm{kN}$	answer (units not necessary)	1	
			$\Sigma \mathrm{F}_{\mathrm{H}}=0$			
			$\begin{aligned} \mathrm{R}_{\mathrm{AH}} & =6 \cdot 9 \cos 39-0 \cdot 8 \cos 12-1 \cdot 2 \sin 28 \\ & =5 \cdot 36-0.78-0.56 \end{aligned}$	3 components @ 1 each	3	
			$=4.02 \mathrm{kN}$	answer (units not necessary)	1	
			$\mathrm{R}_{\mathrm{A}}=\sqrt{ }\left(5 \cdot 57^{2}+4 \cdot 02^{2}\right)$	formula and calculation	1	
			$=6.87 \mathrm{kN}$	answer including units	1	
			$\theta=\tan ^{-1}(5.57 / 4.02)$	formula and calculation	1	
			$=54 \cdot 2^{\circ}$	answer including units	1	12
						(14)

5 Question

Question			Mark Allocation	Marks	
6	a		A $=26 \times 6=156 \mathrm{~mm}^{2} \quad$ answer (units not necessary)	1	
			$\begin{aligned} \sigma & =\mathrm{F} / \mathrm{A} \\ & =40 / 156 \text { correct substitution of values using a load value within elastic region } \\ & =0 \cdot 256 \mathrm{kN} / \mathrm{mm}^{2} \quad \text { correct calculation (units not necessary) } \end{aligned}$	1	
			$\begin{aligned} \varepsilon & =\Delta 1 / 1 \\ & =0 \cdot 2 / 120 \text { correct substitution of values using the corresponding extension value } \\ & =0 \cdot 00167 \quad \text { correct calculation } \end{aligned}$	1	
			$\begin{aligned} \mathrm{E} & =\sigma / \varepsilon \\ & =0 \cdot 256 / 0 \cdot 00167 \\ & =153 \mathrm{kN} / \mathrm{mm}^{2} \end{aligned}$ correct substitution into correct formula correct answer including correct units	1	7
	b		Material stretches elastically then returns to original length		2
			stretches elastically until passes yield point, then plastic stretching does not return to original length/stays permanently deformed.	1 1	2
					(11)

	est		Mark Allocation		
9	a		Distance CD $=\tan 30 \times 3.46=2 \mathrm{~m}$ answer	1	
			Vertical component of 2.9 kN force $=2.9 \times \sin 45=2.05 \mathrm{kN} \quad$ answer	1	
			$\Sigma \mathrm{M}_{\mathrm{D}}=0$ $\left(\mathrm{C}_{\text {horizontal }} \times 2\right)+(2.05 \times 1.73)=(4 \times 3.46)$ 3 moments @ 1 each	3	
			$\left(C_{\text {horizontal }} \times 2\right)+3.55=13.84 \quad \text { use of } 1.73 \mathrm{~m}$	1	
			$\mathrm{C}_{\text {horizontal }}=5.15 \mathrm{kN}$ answer	1	
			Reaction at \qquad substitution $=5.94 \mathrm{kN}$ answer	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	9
	b		Analysing Node A		
			$\begin{array}{rlr} \mathrm{F}_{\mathrm{AB}} & =4 / \sin 30 & \text { substitution } \\ & =8 \mathrm{kN} \quad \text { (STRUT) } \quad \text { magnitude with unit (1) \& nature (1) } \end{array}$	1 2	
			F_{AE} $=8 \cos 30^{\circ}$ $=6.93 \mathrm{kN}$ (TIE) \quad magnitude with unit (1) \& nature (1)	1	
			Analysing Node B		
			$\begin{aligned} & \Sigma \mathrm{F}_{\mathrm{H}}=0(\rightarrow+\mathrm{ve}) \\ & \mathrm{F}_{\mathrm{BD}} \cos 30-8 \cos 30+5 \cdot 94 \cos 30=0 \end{aligned}$	1	
			$\mathrm{F}_{\mathrm{BD}}-8+5.94=0$	1	
			$\mathrm{F}_{\mathrm{BD}}=2 \cdot 06 \mathrm{kN}(\mathrm{STRUT}) \quad$ magnitude with unit (1) \& nature (1)	2	10
	c		Compensates for changes in temperature		2
			$\mathrm{I}_{\mathrm{c}}=10 / 12=0 \cdot 83 \mathrm{~A} \quad$ substitution (1) answer (1)	2	
			$\mathrm{I}_{\mathrm{b}}=0 \cdot 83 / 200=4 \cdot 15 \mathrm{~mA} \quad$ substitution (1) answer (1)	2	
			$\mathrm{V}_{\text {drop }}$ across $320 \Omega=320 \times 4.15 \times 10^{-3} \quad$ substitution	1	
			$=1.328 \mathrm{~V}$ ander	1	
			$\begin{aligned} \mathrm{V}_{\text {out }} & =1 \cdot 328+0.7 \\ & =2 \cdot 028 \mathrm{~V} \end{aligned}$	1	
			Error $=2.028 / 20 \quad$ substitution \& gain of 20	1	
			$=0 \cdot 1014 \mathrm{~V}$ a	1	
			V at inverting input $=12 \times 120 \cdot 03 / 240 \cdot 15=6.00 \mathrm{~V}$ V at non-inverting input $=5 \cdot 998+0 \cdot 1014$	1	
			$=6 \cdot 10 \mathrm{~V}$ answer	1	
			$\mathrm{R}_{\mathrm{V}}=330 \times 6.00 / 6 \cdot 10$ substitution	1	
			$=325 \Omega \quad \text { answer including units }$	1	13
	e		As $\mathrm{V}_{\text {in }}$ increases, non-inverting input greater than inverting input of op-amp1	1	
			op-amp 1 output switches high	1	
			L_{1} switches on	1	
			as voltage increases L_{2} turns on	1	
			as L_{2} switches on L_{1} switches off	1	
			as voltage increases L_{3} switches on and L_{2} switches off	1	6
					(40)

[END OF MARKING INSTRUCTIONS]

