2014 Technological Studies

Advanced Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2014

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Principles for: Technological Studies Advanced Higher

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.
(a) Marks for each candidate response must always be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question. If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader/Principal Assessor.
(b) Marking should always be positive ie, marks should be awarded for what is correct and not deducted for errors or omissions.

GENERAL MARKING ADVICE: Technological Studies Advanced Higher

The marking schemes are written to assist in determining the "minimal acceptable answer" rather than listing every possible correct and incorrect answer. The following notes are offered to support Markers in making judgements on candidates' evidence, and apply to marking both end of unit assessments and course assessments.

Part Two: Marking Instructions for each Question

Section A

Q1
(a) (i) Wein-bridge oscillator
(ii) Sine wave
(b) $\mathrm{f}=\frac{1}{2 \pi \mathrm{RC}}$
$\mathrm{R}=\frac{1}{2 \pi \mathrm{fC}}=\frac{1}{2 \times 3 \cdot 14 \times 1 \times 10^{-6} \times 1000}$
$\mathrm{R}=159 \Omega$

Q2

main:	btfss goto	PORTB, 0 main	;start switch	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
water:	btfss	PORTB, 3	;float switch	1
	goto	ALARM		1
	bsf	PORTB, 1	;poll mux for quantity dial	1
	call	adcread		1
	movwf	QUANTITY		1
	bsf	PORTB, 7	;heat water	1
	bcf	PORTB, 1	;poll mux for temperature	1
HEAT:	call	adcread		1
	movwf	TEMPERATURE		1
	movlw	d'180'		1
	subwf	TEMPERATURE, W		1
	btfss	STATUS,C	;check temp reached 180	1
	goto	HEAT	;no, so keep heating	1
	bcf	PORTB, 7	;heater off	1
	rrf	QUANTITY,F	;quantity $\div 2$	1
	movfw	QUANTITY		1
	bsf	PORTB,6	;valve on	1
	call	wait	;time delay	1
	bcf	PORTB,6	;valve off	1
	goto	main		1
ALARM:	bsf	PORTB,5	;bleep on	1
	movlw call			1
	bcf	PORTB,5	;bleep off	1
	goto	main		1

Q3
(a) $\quad \Sigma \mathrm{M}_{\mathrm{A}}=0+2$

$$
\begin{aligned}
+(10 \times 6)+(5 \times 12)+(1 \times 2 \times 3)-\left(\mathrm{R}_{B} \times 12\right) & =0 \\
+60+60+6-12 \mathrm{R}_{B} & =0 \\
\mathrm{R}_{B} & =+\frac{126}{12}=+10 \cdot 5 \mathrm{kN} \uparrow
\end{aligned}
$$

$$
\begin{aligned}
& \Sigma \mathrm{V}=0 \uparrow+ \\
& +\mathrm{R}_{\mathrm{A}}-(1 \times 2)-10-5+10 \cdot 5=0 \\
& \quad \mathrm{R}_{\mathrm{A}}=+6 \cdot 5 \mathrm{kN} \uparrow
\end{aligned}
$$

Q3
(c) (cont)
$\underline{\underline{0 m} \& 12 \mathrm{mBM}}=0 \mathrm{kNm}$

$1 \mathrm{kN} / \mathrm{m}$

Plotting line
Nature

Marks

$$
\begin{aligned}
\mathrm{BM} & =+(6 \cdot 5 \times 4)-(2 \times 1) \\
& =+26-2=+24 \mathrm{kNm}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{BM} & =+(6.5 \times 3)-(1 \times 0.5) \\
& =+19.5-0.5=+19 \mathrm{kNm}
\end{aligned}
$$

$$
\begin{aligned}
& =+(0 . \\
& =+39
\end{aligned}
$$

$$
-6=+33 \mathrm{kNm}
$$

Q5
(a) Neutral Axis
(b)

(c) $\frac{\mathrm{M}}{\mathrm{I}}=\frac{\sigma}{\mathrm{y}}$
$\sigma=\frac{M y}{I}$

$$
\sigma=\frac{40 \times 10^{6} \times 100}{33 \cdot 3 \times 10^{6}}
$$

$$
\begin{aligned}
\mathrm{M} & =40 \mathrm{kNm} \\
& =40 \times 10^{6} \mathrm{Nmm} \\
\mathrm{y} & =100 \mathrm{~mm} \\
\mathrm{I} & =33.3 \times 10^{6} \mathrm{Nmm}
\end{aligned}
$$

$$
\sigma=120 \mathrm{~N} / \mathrm{mm}^{2}
$$

Q6
(a) Binary coded decimal to decimal decoder (1) converts binary to decimal (1)

Binary coded decimal to 7-segment display (1) decoder converts binary to segment signals. (1)
(b) When OR gate is high, Counter is enabled

Counter counts up on each rising edge
BCD to D decodes binary to decimal
When BCD to D reaches 3 counter A disabled, buzzer sounds
When BCD to D reaches 3 AND enabled
When clock goes high \rightarrow low $2^{\text {nd }} 4$-bit counter B counts up.
The 4-bit output is decoded to drive 7 -segment display.
7 -segment display shows a digit equivalent to count
when count reaches 8 :
signal is sent to OR
and counter A is re-enabled
Decoder continues to 5 and resets counter B to 0 .
Counter A resets at 10

Q7
(a)(i)

(a)(ii)

(b)(i) Removes offset
(b)(ii) Removes hunting / reduces settling time
(c) position

(d) $\underline{\mathbf{A}}$

$$
\left(\frac{60^{\circ}}{90^{\circ}} \times 0.75\right)+0 \cdot 75=1.25
$$

Position A pulse-time $($ mark $)=1 \cdot 25 \mathrm{~ms}$

$$
\frac{\mathbf{B}}{\left(\frac{30^{\circ}}{90^{\circ}} \times 0.75\right)+1.50=1.75}
$$

Position B pulse-time $($ mark $)=1.75 \mathrm{~ms}$
(e) $1.75-1.25=0.5 \mathrm{~ms}$
$0 \cdot 5 \div 0 \cdot 01=50$ steps

Marks

Q8

(a)	obstruction:	call	adcread			7
		movlw	d '8'		1	
		subwf	DATA, W		1	
		btfsc	STATUS,C	$\}$	1	
		goto			1	
		bsf	PORTB,6	,		
		movlw	d '26'	,	1	
		call	wait	J		
		bcf	PORTB,6		1	
	finish:	return			1	
(b)	main: loop:	call	navdata	 (incl. goto main below)	1	
		bsf	PORTB, 3		1	
		bsf	PORTB, 7		1	
		movlw	d ' 10 '		1	
		call	pause		1	
		call	obstruction		1	
		decfsz	FORWARDTIME		1	
		goto	loop			
		movlw	d ' 1 '		1	
		subwf	TURN		1	
		btfsc	STATUS,Z		1	
		goto	main		1	
		clrf	TURNTIME		1	
	ACW:	bsf	PORTB,4		1	
		movlw	d' 8 '	\}	1	
		call	pause	J	1	
		bcf	PORTB, 4		1	
		movfw	d'19'	\}	1	
		call	pause			
		incf	TURNTIME		1	
		movfw	TURNTIME		1	
		subwf	TURNSTOP		1	
		btfss	STATUS,Z		1	
		goto	ACW		1	
			PORTB, 7 main	$\}$ (incl. goto loop above)	1	20

Q8

(c)

$$
\begin{aligned}
\mathrm{I}_{\mathrm{D}} & =\frac{\mathrm{BD}^{3}}{12}-\frac{\mathrm{bd}^{2}}{12} \\
& =\frac{40 \times 150^{3}}{12}-\frac{38 \times 146^{3}}{12} \\
& =11250000-9855097 \\
& =1394903 \\
\mathrm{I} & =\frac{\pi D^{4}}{64} \\
& =\frac{\pi \times(2 \times 36)^{4}}{64} \div 2 \\
\mathrm{I}_{\mathrm{D}} & =659584 \\
\mathrm{I}_{\text {total }} & =1394903+659584 \\
\mathrm{I}_{\text {total }} & =2054487 \mathrm{~mm}^{4}
\end{aligned}
$$

(d) yield stress aluminium $=30 \mathrm{~N} / \mathrm{mm}^{2}$

$$
\begin{aligned}
\sigma & =\frac{\mathrm{my}}{\mathrm{I}} \\
\mathrm{~m} & =\frac{\sigma \mathrm{I}}{y} \\
& =\frac{30 \times 2054487}{75} \\
& =821795 \\
\mathrm{~m}=\frac{\mathrm{FL}}{4} \quad \mathrm{~F} & =\frac{4 \mathrm{~m}}{L} \\
& =\frac{4 \times 821795}{850} \\
& =3 \cdot 87 \mathrm{kN}
\end{aligned}
$$

1	
1	
1	
1	
1	
1	6
1	
1	
1	
1	
1	
1	
1	7
	(40)

Q9
(a) $\quad 2^{8}=0 \rightarrow 255 \quad \frac{4 \cdot 606}{235}=0 \cdot 0196$ volt increments

$\mathrm{V}_{\text {out }}=-\frac{\mathrm{R}_{\mathrm{f}}}{\mathrm{R}_{\mathrm{i}}} \times \mathrm{V}_{1}$
$0 \cdot 0196=\frac{-10 \cdot 192}{\mathrm{R}_{0}} \times 5$
$\mathrm{R}_{0}=2600 \mathrm{k} \Omega$
$\mathrm{R}_{1}=1300 \mathrm{k} \Omega$
$\mathrm{R}_{2}=650 \mathrm{k} \Omega$
$\mathrm{R}_{3}=325 \mathrm{k} \Omega$
$\mathrm{R}_{4}=162.5 \mathrm{k} \Omega$
$\mathrm{R}_{5}=81.3 \mathrm{k} \Omega$
$\mathrm{R}_{6}=40.6 \mathrm{k} \Omega$
$\mathrm{R}_{7}=20 \cdot 3 \mathrm{k} \Omega$

Marks

(a) (cont)

Q9

(b) (i) Voltage controlled Oscillator
(ii) \quad SubA $=$ RC circuit,charging time prop to $V_{\text {in }}$

SubB $=$ volt divider, provides 1 Volt ref
SubC $=$ comparator compares 1 Volt ref with Cap volt $V_{\text {cap }}>1$ volt then + ve output
SubD $=$ npn trans responds to +ve , switches on DPDT relay briefly, disch cap + switches on output
SubE = lamp and buzz, freqency of outputs prop to current drawn by pump motor
(iii) $\mathrm{V}_{\text {in }}$ must be greater than 1 volt, limited frequency of relay, mech life of relay
(c) main: bsf

PORTB, 4
movlw
d‘5’
call wait
bcf
PORTB, 4
loop:
call
sublw
btfsc
goto
btfss
goto
bcf
call
goto
wet: bsf
goto loop

Marks

Q10

(a)

(i) $\quad \Sigma \mathrm{M}_{\mathrm{Q}}{ }^{+2}=0$

$$
\begin{aligned}
& -\left(\mathrm{R}_{\mathrm{B}} \times 1\right)+(7.5 \times 1)=0 \\
& \mathrm{R}_{\mathrm{B}}=+7.5 \mathrm{kNA}
\end{aligned}
$$

(ii) $\quad \Sigma \mathrm{M}_{\mathrm{Q}}=0+$

$$
+(4.09 \times \text { perp })+(F \times 1)-(7.5 \times 2)=0
$$

$$
+(409 \times 1.224)+F-15=0
$$

$$
\mathrm{F}=10 \mathrm{kN}
$$

$$
\operatorname{perp}=1 \cdot 414 \cos 30^{\circ}=1 \cdot 224 \mathrm{~m}
$$

Q10

(b)

$\Sigma \mathrm{M}_{\mathrm{P}}=0+\downarrow$
$-\left(\mathrm{M}_{3} \times 1\right)+(2 \cdot 5 \times 1)=0$
$\mathrm{M}_{3}=+2 \cdot 5 \mathrm{kN}$ (TIE)
$\Sigma \mathrm{M}_{\mathrm{Q}}=0+\nu$
$+(2 \cdot 5 \times 2)+\left(\mathrm{M}_{1} \times\right.$ perp $)=0$
$M_{1}=\frac{-5}{1 \cdot 224}=-4.08$
$\mathrm{M}_{1}=4 \cdot 08 \mathrm{kN}($ STRUT $)$

$$
\Sigma \mathrm{M}_{\mathrm{R}}=0+\downarrow
$$

$+\left(\mathrm{M}_{1} \times \operatorname{perp}_{2}\right)+\left(\mathrm{M}_{2} \times 1 \cdot 414\right)=0$
$+(-4.08 \times 0.707)+\left(\mathrm{M}_{2} \times 1.414\right)=0$
$M_{2}=\frac{+4 \cdot 08 \times 0 \cdot 707}{1.414}$
$M_{2}=+2.04$
$\mathrm{M}_{2}=2 \cdot 04 \mathrm{kN}$ (TIE)

$$
\begin{aligned}
\text { perp } & =1.414 \cos 30^{\circ} \\
& =1 \cdot 224 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{perp}_{2} & =1.414 \sin 30^{\circ} \\
& =0.707 \mathrm{~m}
\end{aligned}
$$

OR

$\Sigma \mathrm{F}_{h}=0(\overrightarrow{+v e}):$
$+\mathrm{M}_{1} \cos 15+\mathrm{M}_{2} \cos 45+\mathrm{M}_{3}=0$
$-4 \cdot 08 \cos 15+\mathrm{M}_{2} \cos 45+2 \cdot 5=0$
$\mathrm{M}_{2} \cos 45=1.44$
$\mathrm{M}_{2}=2 \cdot 04 \mathrm{kN}$ (TIE).

Q10
(c)

$$
\mathrm{V}_{\text {out }}=\frac{-0 \cdot 32}{2} \mathrm{t}
$$

$$
V_{\text {out }}=-0 \cdot 16 t
$$

(d)

$$
\begin{aligned}
\mathrm{V}_{\text {out }} & =-\frac{1}{\mathrm{RC}} \int \mathrm{~V}_{\text {in }} \mathrm{dt} \\
-0 \cdot 16 \mathrm{t} & =-\frac{1}{2 \cdot 7 \times 10^{6} \times 6 \cdot 8 \times 10^{-6}} \int \mathrm{~V}_{\text {in }} \mathrm{dt} \\
-0 \cdot 16 \mathrm{t} & =-\frac{1}{18 \cdot 36} \times \frac{\mathrm{V}_{\text {in }}}{1} \times \mathrm{t} \\
\mathrm{~V}_{\text {in }} & =0.16 \times 18 \cdot 36 \\
& =2.94 \text { volts }
\end{aligned}
$$

(e) $V_{\text {out }}=-0.16 \mathrm{t}$
$-12=-0 \cdot 16 t$
$t=\frac{12}{0 \cdot 16}$
$\mathrm{t}=75$ seconds

Q10

(f) When $\mathrm{V}_{\text {in }}=1.5 \mathrm{~V}$: lower threshold,
\therefore output already low.

$\mathrm{Rp}=\frac{6 \cdot 8 \times 4.7}{6 \cdot 8+4.7}=\frac{31 \cdot 96}{11 \cdot 5}=2.78 \mathrm{k} \Omega$
$\frac{\mathrm{R}_{1}}{\mathrm{R}_{\mathrm{P}}}=\frac{3 \cdot 5}{1 \cdot 5}$
substitution
$\mathrm{R}_{1}=\frac{3 \cdot 5}{1 \cdot 5} \times 2 \cdot 78$
$\mathrm{R}_{1}=6 \cdot 49 \mathrm{k} \Omega$
(g)

R_{1}
sen

